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Project Overview & Innovation

MS-SOFC embedded directly into combustion chamber of
gas turbine engine generator

> Leverages gas turbine Balance-of-Plant (BOP)

> Robust MS-SOFC for high pressure, 10x power density
> Synfuel integrated with high-efficiency C-POX

> Thermodynamic synergies with waste heat recovery

Phase 1 Goal is to demonstrate FLyCLEEN concept operability &
to develop high specific power, robust SOFC

Performance Metrics Agzz‘l'e FLyCLEEN

ESPG system specific energy [kWh/kg] >3 ~3.7
Powertrain system specific power [kW/kg] >0.75 ~1.3
Cost of fuel at T00MWh scale [$/kWh] <0.15 ~0.14
Initial capital cost of ESPG system [S/kW] <1000 ~940
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Task Outline & Technical Objectives

> Phase 1 Focus:
— Develop robust MS-SOFC for high specific power
— Demonstrate SOFC-Combustion system operation at high pressure
> Potential Phase 2: 5kW CPOX-SOFC-Combustion Chamber Prototype fabrication and demo

Ensure FLyCLEEN system meets performance target

System performance modeling (power, weight, cost, etc.)

Develop MS-SOFC with low ASR & optimized geometry MS-SOFC specific power > TkW/kg
Coupled mechanical-thermal modeling of SOFC Enable efficient design process of robust MS-SOFC
Integrated sub-system testing at high pressure System operability demo & robustness of MS-SOFC

Enable using CNLF for system at high efficiency with
desired fuel composition for SOFC

Develop nano anode coating material (by WVU) Improve durability of SOFC electrode

C-POX reformer development and design (by PCI)
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MS-SOFC Development

Metal supported cell
design

E—TTTTTTTTE— 2P Metal-Supported (MS) SOFC Stack

Ca th o d e : = iz . . . .
loctrol e Doy o > Thin active ceramic coatings on metal substrates
ectrolyte . .
. > Most robust for engine environment
o nterconnect

D. Hickey et al 2017 ECS Trans.

Thermal Spray Method for SOFC fabrication

> Low-cost & high-rate deposition

> Allows redesign of structures

> Improved anode electrical contact
> Integrated anode seal
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SOFC Performance

Metal-Supported (MS) SOFC 3-Cell Stack MS-SOFC Progression [kW/kg]

> 80% of Phase 1 power density target achieved 0.7 T
> Specific power 15x improvement during Year 1 : v
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High-Pressure Testing

3-Cell Dummy SOFC Stack Integrated with Combustor

> Tested in a single nozzle rig at ~25-atm in Year 1 v Operability at high-pressure
> Plan to test 10-cell SOFC stack integrated with combustor in Year 2 ¥ Mechanical integrity

Main pre-mixer pilot
Jet-A flame

Dummy stack H,
HEINE Sl

N Dummy
QrpPQ-e@ SOFC Stack 6
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Synfuel C-POX Reformer Development

CPOX Testing @ 5 kW, w. IPK (Inlet Air @ ~200°C; 0/C = 1.05, 1 atm)
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Data shows >95% of max. theoretical efficiency

LHV-based efficiency >80%

H,+CO > 47% (equilibrium H,+CO is 48%)
QIrpPQ-e
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Nano Anode Coating Material Development W Ui

Nano-Catalyst Evaluation in Accelerated SOFC Tests Anode Current Collection Laver €0 SOFC Design
- Added Porosity
Ce0, deposition with S1 at 1.0 M concentration was replicated in a SOFC 70% Fine Ni0 (0.5-1.5 pm)

; . . 30% Fine-grade YS7 (0.35-0.45 pm)
to yield a deposition density of 41.8 mg/cm3. ,
Anode Active Layer (AL)

50% Fine NiO (0.5-1.5 um) AL: NiO/YSZ

. . . % -grad 0.35-0.45
Cell Performance - Baseline & Ceria Nano-Catalyst Infiltrated SOFCs 20% Fine-grade vz )

14 ocv Electrolyte
. YSZ-8 Electrolyte .
—— >% i diameter Electrolyte: YSZ
1.2 m 0.25-0.30 mm Thickness
i ) L)
1 \ * Cerium Oxide | 41.8 mg/cm’ 80% Midﬂzﬁéﬁiﬁ'ng(ﬁ-o_z‘ um)
Composition ___—— === T T T T T T 20% Nano-grade GDC (5-10 nm)
2 0.8 change / 65% improvement Cathode Active Layer (AL)
e CRUNY 50% LSCF (0.7-1.1 pm) AL: LSCF/GDC
S 06 1 TS TTTTTTTTTTTTTTTTTTTTTTT in degrada’uon rate 50% Mid-grade GDC (0.1-0.4 pm)
§ - * Ba_ Cathode Current Collection Laver (CC)
0.4 Cons_tant Current 7{)9; ’E‘gg‘:‘é;gﬁsﬁlm)
Applied 30% Mid-grade GDC (0.1-0.4 pm)
0.2
0
0 5 10 15 20 25 30 35 .*‘.
Time (h) Ce%, WESTE
Test Conditions L '319/ S
* Temperature: 750 °C Overall improvement in performance (+170%) )
« Anode: 20% H,; 30% CH,; 50% N, o : :
. Cathode: 100% Air 65% improvement in degradation rate [mV/hr]
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Risk Update

. # | Risk -
1 SOFC specific power Certain
2 SOFC mechanical integrity Likely

Anode degradation k=
3 a: nano-particle coarsening & long-term stability _8
b: anode porosity = Moderate
4
4  Weight of new components =
Unlikely
5 Life of new components
6 Projected ESPG cost Rare
C-POX reformer
7 a: performance & manufacturability Insignificant|  Minor Moderate Major |Catastrophic
b: durability

Consequences

Qi Ql)ti"fﬁe» ° Now @ Start of project 9
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Technology-to-Market Approach

gyCLEEN Program

2023-2025

Rig Test of
5kW Sub-
systems

Aviation
EIS with
customers

Aviation
Engine dev
program

éa )

Aero-
Derivative

& Marine
\_ Y

Big Engine
Demo

2021-2023

Rig Test of
Components

GE Research will partner with GE Business Units to commercialize FLyCLEEN technology

Land-based aero-derivative provides early product opportunity
 Offer efficiency benefit & de-carbonization approach for power generation
» Mature reliability for aviation
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https://arpa-e.energy.gov

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy,
under Award Number DE-AR0001344. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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